Optimization and Test of Ni-Base Superalloy SideGroove Compact Tension Specimen
1.Key Laboratory of Aero-Engine Thermal Environment and Structure,Ministry of Industry and Information Technology,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;3.State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
[1] Cowie W D, Stein T A. Damage Tolerant Design and Test Considerations in the Engine Structural Integrity Program[R]. AIAA80-0784.
[2] 贾 旭, 胡绪腾, 宋迎东. 基于三维裂纹尖端应力场的应力强度因子计算方法[J]. 航空动力学报, 2016, (6): 1417-1426.
[3] 王朕峰. CT试样疲劳裂纹扩展特性及K断裂参量的数值模拟[D]. 南昌: 南昌大学, 2012.
[4] Rui Bao, Hongqin Yang, Jianyu Zhang, et al. Fatigue Crack Growth Measurement in a Superalloy at Elevated Temperature[J]. International Journal of Fatigue, 2013, 47: 189-195.
[5] He J Z, Wang G Z, Tu S T, et al. Characterization of 3-D Creep Constraint and Creep Crack Growth Rate in Test Specimens in ASTM-E1457 Standard[J]. Engineering Fracture Mechanics, 2016, 168(A): 131-146.
[6] Bin He, Jun Liu, Lanlan Tian, et al. Numerical Study of the Side-Groove Effect on Creep Crack Growth Behavior in P92 Steel[J]. Engineering Fracture Mechanics, 2017, 171: 64-75.
[7] Neale B K. The Influence of Side-Grooving on Pre- Cracked Charpy Specimens in Bending[J]. International Journal of Pressure Vessels and Piping, 1982(10): 375-398
[8] 张新平, 史耀武. 侧槽的拘束作用及对断裂韧性参量的影响[J]. 应用力学学报, 1994, (1): 54-59.
[9] Delorenzi H G, Shih C D. 3-D Elastic-Plastic Investigation of Fracture Parameters in Side-Grooved Compact Specimen[J]. International Journal of Fracture, 1983, 21(3): 195-220.
[10] Shih C F, DeLorenzi H G, Andrenk W R. Elastic Compliances and Stress-Intensity Factors for Side-Grooved Compact Specimens[J]. International Journal of Fracture, 1977, (13): 544-548.
[11] He J Z, Wang G Z, Tu S T, et al. Effects of Side-Groove Depth on Creep Crack-Tip Constraint and Creep Crack Growth Rate in C(T) Specimens[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(2): 260-272.
[12] Hyde T H, Saber M, Sun W. Testing and Modelling of Creep Crack Growth in Compact Tension Specimens From a P91 Weld at 650℃[J]. Engineering Fracture Mechanics, 2010, 77(15SI): 2946-2957.
[13] Yang H, Bao R, Zhang J, et al. Crack Growth Behaviour of a Nickel-Based Powder Metallurgy Superalloy Under Elevated Temperature [J]. International Journal of Fatigue, 2011, 33(4): 632-641.
[14] Saxena A. Creep and Creep-Fatigue Crack Growth[J]. International Journal of Fracture, 2015, 191(1-2): 31-51.
[15] Garcia-Manrique J, Camas-Pe?a D, Lopez-Martinez J, et al. Analysis of the Stress Intensity Factor along the Thickness: The Concept of Pivot Node on Straight Crack Fronts [J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(4): 869-880.
[16] 王 亮, 丁传富. 高温下直流电位法测量裂纹长度的应用[J]. 航空材料学报, 2006, (3): 359-360.
[17] 王亮, 黄新跃, 郭广平. 直流电位法检测高温合金的疲劳裂纹扩展性能[J]. 理化检验(物理分册), 2011, 47(8): 480-482.
[18] 丁传富, 王 亮, 刘建中. 直流电位法自动检测高温疲劳裂纹长度的研究及应用[J]. 实验室研究与探索, 2007, (10): 270-272.